MSE 298 Seminar (Zoom): Toward Topological Quantum Computing With Magnetic Insulators
Professor
Division of Physics, Mathematics and Astronomy
California Institution of Technology
Zoom: Meeting ID: 842 506 6501 Passcode: 587901
Abstract: Recent experiments on the Mott insulator RuCl3 support the emergence of a magnetic-field-induced “spin liquid” phase featuring non-Abelian anyons, which underlie intrinsically fault-tolerant topological quantum computation schemes. This talk will explore two classes of measurements that probe anyons born in such a spin liquid. The first class utilizes low-voltage electrical probes – despite the fact that RuCl3 realizes a good Mott insulator. To this end, I will introduce circuits that interface electrically active systems with RuCl3 to perfectly convert electrons in the former into anyons in the latter, enabling analogues of transport probes for topological superconductors. The second class of measurements utilizes ancilla spins to implement a time-domain analog of anyon interferometry developed for quantum Hall systems. Together, these results illuminate a partial pathway toward exploiting magnetic insulators for topological quantum computation.
Bio: Jason Alicea earned a Ph.D. in physics from UC Santa Barbara in 2007 and then moved onto a postdoc fellowship at Caltech. In 2010 he became an assistant professor at UC Irvine before returning to Caltech as a professor in 2012. His research explores novel quantum phases of matter, often motivated by fault-tolerant quantum computing applications.
Share
Related Content
| Attachment | Size |
|---|---|
| 155.56 KB |
Upcoming Events
-
EECS Seminar: Less Compute, More Intelligence – Efficient and Autonomous Generative AI and Agents
-
MAE 298: Microscopic Robots that Sense, Act and Compute
-
CBE 298 Seminar: Interface Modification for Electrocatalysis
-
CEE Ph.D. Defense Announcement: Machine Learning and Remote Sensing for Environmental Modeling - From Large-Scale Streamflow Forecasting to Malaria Risk Mapping
-
CBE Special Seminar: Operando Electrochemical Methods at Dynamic Energy Materials Interfaces