Examples of problems given in the Preliminary Examination EECS170A Note that these are just some examples. Completely different problems may be given. ## PLEASE USE FOLLOWING GENERAL PARAMETERS UNLESS STATED OTHERWISE: $$kT = 0.026eV @ 300K; \ k = 1.38 \times 10^{-23} \ J/K; \ h = 6.626 \times 10^{-34} \ J.s; \ \varepsilon_0 = 8.85 \times 10^{-14} \ F/cm$$ For $Si \rightarrow E_g = 1.12 \ eV, \ K_S = 11.7, \ n_i = 10^{10} \ cm^{-3} \ @ 300K, \ \text{For } Ge \rightarrow E_g = 0.66 \ eV, \ K_S = 16$ 1. Consider an ideal pn junction diode shown in the figure. Doping concentrations for p and n sides are $N_D = 10^{16} \, cm^{-3}$, $N_A = 5 \times 10^{16} \, cm^{-3}$. Also minority carrier lifetimes and diffusion coefficients are given as $\tau_n = 5 \times 10^{-8} \, s$, $\tau_n = 1 \times 10^{-8} \, s$, $D_N = 23 \, cm^2 \, / \, s$, $D_P = 8 \, cm^2 \, / \, s$. Forward bias voltage of 0.61V is applied. (a) Develop formulation for excess hole concentration as a function of x, x>0, (b) Create an argument and justify your results for calculation of electron and hole diffusion current densities at any point x>0? ## EECS 170A PRELIM EXAM 2. A MOS capacitor is fabricated by using Metal layer deposited on top of **20nm** thick SiO₂ oxide layer on top of p-type silicon with doping concentration of N_A=1x10¹⁴cm⁻³. Dielectric coefficients of silicon and oxide layer is given as K_S=11.8, K_O = 3.9, ε_0 = 8.86×10⁻¹⁴ F/cm. Draw approximate energy band diagram for following gate voltages. VG = ±0.5V, VG = ±V_t, VG = ±1.5V_t? (Assume flat band approximation, i.e. metal and semiconductor has same work function) 3. An n-channel MOSFET is connected to a circuit as shown in the figure. For a given $V_{DD} > V_T$, can this MOSFET be in cut off mode for any values of R_1 and R_2 , explain your reasoning? If $R_1/R_2 = 1$ estimate and draw the V_D for $V_T < V_{DD} < 3V_T$?