Enthusiastic Students Revive the Biomedical Engineering Society at UC Irvine

A group of enthusiastic and highly motivated undergraduate students have recently revived the student chapter of the Biomedical Engineering Society at UC Irvine. Led by current chapter president Karen Liu, a third year BME undergraduate, the group has been holding meeting assembly dinners at the BME department’s new conference room in Natural Sciences II. These events have broken from industry and academia, with the objective of bringing biomedical engineering to the students and diverse career opportunities available. Many students have been attending to hear experts report, food, conversation, networking, and exploring possible career paths.

Events for 2006-07 are being planned, and the group welcomes possible career paths. Lectures enjoying food, conversation, networking, and exploring opportunities available. Many students have been attending the biomedical engineering to the exciting and diverse career paths.

Events for 2006-07 are being planned, and the group welcomes possible career paths. Lectures enjoying food, conversation, networking, and exploring opportunities available. Many students have been attending the biomedical engineering to the exciting and diverse career paths.

BME Distinguished Lecturer Series Update

We would like to thank those who attended the BME Distinguished Lecturer Series this year, and look forward to continuing the tradition of featuring prominent leaders in the biomedical engineering field during our upcoming 2006-07 series. Please stay tuned for a complete schedule of Distinguished Lecturer events, beginning in fall 2006.

For more information please visit www.bme.uci.edu or call 949-824-6284

Upcoming Events

June 20, 2006, 7:45 - 9 a.m.

Engineering Innovations Lecture Series III: Visualization in Medicine: From Small to Large

Featuring Edan Kasper & Jang Myoung UC Index Location: UC Irvine Campus Department of Biomedical Engineering 1310 Natural Sciences II Irvine, CA 92697-2715 www.bme.uci.edu or call 949-824-3523 to Rsvp

BME Distinguished Lecturer Series Update

We would like to thank those who attended the BME Distinguished Lecturer Series this year, and look forward to continuing the tradition of featuring prominent leaders in the biomedical engineering field during our upcoming 2006-07 series. Please stay tuned for a complete schedule of Distinguished Lecturer events, beginning in fall 2006.

For more information please visit www.bme.uci.edu or call 949-824-6284

Upcoming Events

June 20, 2006, 7:45 - 9 a.m.

Engineering Innovations Lecture Series III: Visualization in Medicine: From Small to Large

Featuring Edan Kasper & Jang Myoung UC Index Location: UC Irvine Campus Department of Biomedical Engineering 1310 Natural Sciences II Irvine, CA 92697-2715 www.bme.uci.edu or call 949-824-3523 to Rsvp

BME Distinguished Lecturer Series Update

We would like to thank those who attended the BME Distinguished Lecturer Series this year, and look forward to continuing the tradition of featuring prominent leaders in the biomedical engineering field during our upcoming 2006-07 series. Please stay tuned for a complete schedule of Distinguished Lecturer events, beginning in fall 2006.

For more information please visit www.bme.uci.edu or call 949-824-6284

Upcoming Events

June 20, 2006, 7:45 - 9 a.m.

Engineering Innovations Lecture Series III: Visualization in Medicine: From Small to Large

Featuring Edan Kasper & Jang Myoung UC Index Location: UC Irvine Campus Department of Biomedical Engineering 1310 Natural Sciences II Irvine, CA 92697-2715 www.bme.uci.edu or call 949-824-3523 to Rsvp
Injury Cures Efforts for Neurodegenerative Disorders, Spinal Cord Injury Cures

By developing a device with separate micro-compartments therefore reducing costs.” Jeon, who is an assistant professor in The Henry Samueli School of Engineering, according to researchers in The UC system and California. Findings are highlighted in the August 2005 edition of Nature Methods magazine, and can be viewed at www.naturemethods.com. Researchers suggested that the device may be used to screen drugs to overcome spinal cord injuries, may be used to screen drugs to treat certain diseases and disorders such as Alzheimer’s disease, and could help to understand disease processes of spinal cord injury, according to researchers in the Henry Samuel School of Engineering.

Biomedical engineer Nien Liu, Ph.D. and colleagues have designed a microfluidic device, which uses tiny volumes of fluid to create microfluidic chambers with different conditions. The device was capable of separating the axons from cell fragments, while looking at how each affected brain function and disorders. Elevated and measurable signals from those axons, that signal between the brain's many networks and other signals through the central nervous system.

“Previous solutions were extremely challenging to manufacture and assemble, including high throughput implementations,” said Jeon, who is an assistant professor in The Henry Samueli School of Engineering. “Our microfluidic, carbon plate controlled consists of controlled environments producing axons for neurobiological research.” The device was capable of separating the axons from cell fragments, while looking at how each affected brain function and disorders.

Nien Liu, assistant professor in the Department of Biomedical Engineering, along with his team: Professors Abraham Lee and Zoran Popovic, designed a microfluidic device, which uses tiny volumes of fluid to create microfluidic chambers with different conditions. The device was capable of separating the axons from cell fragments, while looking at how each affected brain function and disorders. Elevated and measurable signals from those axons, that signal between the brain's many networks and other signals through the central nervous system.

“Previous solutions were extremely challenging to manufacture and assemble, including high throughput implementations,” said Jeon, who is an assistant professor in The Henry Samueli School of Engineering. “Our microfluidic, carbon plate controlled consists of controlled environments producing axons for neurobiological research.” The device was capable of separating the axons from cell fragments, while looking at how each affected brain function and disorders. Elevated and measurable signals from those axons, that signal between the brain's many networks and other signals through the central nervous system.

“Previous solutions were extremely challenging to manufacture and assemble, including high throughput implementations,” said Jeon, who is an assistant professor in The Henry Samueli School of Engineering. “Our microfluidic, carbon plate controlled consists of controlled environments producing axons for neurobiological research.” The device was capable of separating the axons from cell fragments, while looking at how each affected brain function and disorders. Elevated and measurable signals from those axons, that signal between the brain's many networks and other signals through the central nervous system.

“Previous solutions were extremely challenging to manufacture and assemble, including high throughput implementations,” said Jeon, who is an assistant professor in The Henry Samueli School of Engineering. “Our microfluidic, carbon plate controlled consists of controlled environments producing axons for neurobiological research.” The device was capable of separating the axons from cell fragments, while looking at how each affected brain function and disorders. Elevated and measurable signals from those axons, that signal between the brain's many networks and other signals through the central nervous system.